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EQUILIBRIUM OF A HOMOGENEOUS ELASTIC MEDIUM BOUNDED BY A RECTILINEAR STIFF ROD* 

S.K. KANAUN 

A uniform elastic medium with an inclusion in the shape of an elongated 
solid of revolution is considered. It is assumed that the elastic moduli 
of the medium are much small than the elastic moduli of the inclusion 
(stiff rod). The principal term is constructed for the expansion of the 
elastic fields in a medium with a stiff rod in a series of small par- 
ameters of the problem: the ratio between the characteristic linear 
dimensions of the inclusion and the ratio between the elastic moduli of 
the medium and the inclusion. The part of the principal term of the 
"inner" expansion, the stress field within the rod, that varies slowly 
along the rod axis, is determined by a method described in /l/. Rods 
with a different change in the radius of the transverse section along the 
axis, in the shape of a cylinder, an elongated ellipsoid, and a tapered 
spindle are considered. By using a well-known integral operator the 
principal term of the desired expansion of the elastic fields outside the 
rods is restored according to the known inner expansion. 

1. Formulation of the problem. In a uniform elastic medium with elastic modulus 
tensor c,, let there be an inclusion with the moduli c = cg + cl. The inclusion occupies a 
domain V which has the shape of a body of revolution with axis I? and radius a(z), where z 
is a point.on I? and a(z) is a continuous, piecewise-smooth function. We assume that the 
length of the inclusion along the axis r (21) considerably exceeds its characteristic radius 
a, while the stiffness of the inclusion is significantly greater than the stiffness of the 
medium (c,.c- 1 = O(6), 6<1 where the dot denotes convolution of the tensors in the two indices). 

The stress field o(z) in the medium with the inclusion satisfies the well-known relation- 
ship /2/ (5 (I~. I?, z3) is a point of the medium ) 

c(1)-1.0(2)+ K(~-d).C1.C-~.u(x’)dx’=c~l.a”(~) 
i 

(1.1) 

c (5) = c, 5 tz v; c (5) = co, 2 E v 

where oO(z) is the external field applied to the medium whose characteristic scaleofvariation 
will be considered to be comparable with the rod length but considerably greater than the 
characteristic radius a. The kernel K(s) of the integral operator K in this relationship is 
expressed in terms of the second derivatives of Green's function G for the medium c0 

Here 6(x) is the delta function and 6,fl is the Kronecker delta. 
It follows from (1.1) that the elastic field outside the domain V is restored by means 

of the values of o(z) within V. The equation for the field o(z) within the rod is obtained 
by multiplying both sides of (1.1) by the characteristic function of the domain V. 

It will later be convenient to consider the tensor components c and c0 in (1.1) as 
dimensionless quantities, where c0 = 0 (l),c-' = O(6). For this it is sufficient to multiply 
both sides of (1.1) by the characteristic value of the elastic modulus of the medium. 

In this paper we construct the principal term of the expansion of the field a(z) within 
the rod in a series in small parameters of the problem &=a/1 and S. As follows from the 
results of /l/, the principal term of the expansion mentioned for o(5) consists of a slowly 
varying component along the rod axis and functions of boundary-layer type localized in the 
neighbourhood of singular points of p, breaks in the function Q(Z) or the ends of the rod. 
The main purpose of the paper is to construct the slowly varying part of the principal term 
of the expansion of o(x) in series in F and 6. 
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Let us note an important property of the limit of the solution of (1.1) in E. If we pass 
to the limit as E+-0 in this equation, its solution O(X) turns out to be constant in each 
section of the rod (see /l/). Consequently, it can be expected that the principal term of the 
desired expansion of the field o(x) will be constant in transverse sections of the domain V, 

at least far from the rod ends and points of the break in the function a(z). This allows some 
simplification of the initial equation (1.1). 

We place the origin of a Cartesian system of coordinates yl,y,,z at the middle of the 
rod while directing the z axis along r. We let o(z) denote the transverse section of the 
rod. For each point IE V a unique representation I = y + zm hold, where y(y,, y,) is a 
vector in the plane o(z) and m is the direction of the z axis. Assuming C(J) ==a+), we 
examine (1.1) at points on the rod axis r. We introduce the relative coordinates E = zil,q -= 

Y/l and after integration over the transverse sections o(E) we obtain 

c-‘.o(E) i- 1 R([, 5’).c,.c-‘.o(~‘)d~‘=c;‘~a,(~) (1.3) 

x (E. E’) = ( K [(E - 5’) m - If] dq’ (1.4) 
oc’) 

It turns out that the components varying slowly along r for the principal term of the 
desired expansion of the function o(x) and the solution of (1.3) are in agreement. Eq. (1.3) 
also enables us to find the most "far-acting" of the functions of boundary layer type that 
occur in the expression for the principal term of the expansion IJ (r). 

We will now construct the formal expression fortheprincipal term of the expansion of 
the solution of (1.3) in a series in the small parameters E and 6 (Sect.3). We will first 
find the explicit form of the kernel X(E,E') of the operator K in (1.3) in Sect.2. 

2. Representation of the operator K. We will introduce the tensor basis Pi (m)that 
isconvenientfor representing the quadrivalent tensors occurring in the problem and which we 
constructfromthe unit vector m, and the bivalent tensor (&a = 6,:: - mamp 

It can be shown that these six linearly independent tensors form a closed algebrarelative 
tothemultiplication-convolutionoperationin two indices. An analgous tensor basis was 
examined in/3/(Appendix 4) where a "multiplication" table of the tensors pi (m) and an 
inversionformula for the tensor belonging to a linear shell Pi (4 are presented. 

Furthermore, we will considerthemedium to be_isotropic and the rod to be transversely- 
isotropic with isotropy axis directed along the I' axis. If m is the direction oftheisotropy 
axis, then the tensors c,, and c in the basis Pt (m) take the form 

co = 2klP, + &I (Pz + P, + P‘) + 4p,P, + (ho + 2ki) P, 
c = 2pP, + hP, + r (P, + P,) + yP, + pPa 

(2.1) 

Here L p. are the Lame parameters ofthemedium, and the relationship between the con- 

stants L, p,r, Y, P and the technical elastic moduli of a transversely-isotropic body is given 
by the equalities 

vl=E, ‘-&- ( *P )v VZ=-&+, P~,=-+Y 
A = 2 [(a + PL) P - T*] 

where E,, Ep. E, are Young’s moduli (E, is themodulus along the isotropy axis) vl, v2 and 
Poisson's ratios, and ILl? t%V fLm are shear moduli. 

The expression for the symbol K+ (k) of the operator Kin (1.1) - the Fourier trans- 
formation of the function K(z) (1.2) - in the basis Pi (m) has the form 

K*(~)=~IP,(~)+(I--~)P,(~)~. n+, >.o + WI x#)= - 
A0 i $0 

(2.3) 

where I; (k,,k,,k,) is the vector parameter of the Fourier transformation (the k,, k2, k, coor- 
dinate system is conjugate to *),,~l,Z). 

We now turn to (1.3) and we find an expression for the function x(5,5') the kernel of 
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the integral operator g in this equation. The equality 

R (%, %‘) = (2~)~~ \” 
& 

dq l K* (k) exp {-- ik I(% - %‘) m - q’]) dk 

follows from relationships (1.4) and (2.3) , where the integration over k (k,, k,, k,) is performed 
over the whole k-space. Changing the order of evaluating the integrals, first with respect 

to 0 (5')? and then with respect to k,,k,, we obtain 

u 
R (I, 5')= (2n))i j K* (E (E'), k,) e-ika(x-E’) dk,, e (%) = q (2.4) 

-Cz 

where the function K* (s(E'), k3) - the symbol of the operator K - .has the form 

K* = k,*P, i- k,*P, -b k,* (Ps + Pa) -t- k,*P, $m k,*P, 

k,* = (f6p,J1 14 (2 - x0) T,* $ x,T,*], 

k,* = (32pJ’ x0 (T,* - 4T,*) 

k,* = - (4po)-’ xoT2*, k,* = (2pJ’ (2 - T,* - 2x,T,*) 

k e* = (2p,)-l12 (1 - x0) (I- T,*) + x,T,*] 

(2.5) 

The functions Tr* (s,k) and T,* (s, k) are determined by the relationships (the sub- 
script 3 is here and henceforth omitted from the argument k3) 

T,* (F, k) = e (%‘)I k 1 K, (E(t’)i k I), T,* (P, 10 = (2.6) 

8’ (5’) kaKo (8 (%‘)I k I) 

where K. and K1 are modified Bessel functions. 
It is seen hence and from (2.4) and (2.5) that the kernel K&f') of the integraloperator 

R is governed by a formula analogous to (2.5) in which T,* (E, k) and T,*(s, k) should be 
replaced by the functions 

They are the Fourier 
of the integral operators 
formula 

The function e(g) in 

T, (E> E’) = 9 (E’) 
2 [(E - e’)Z + 9 (y)]“” ’ (2.7) 

T,(%, %t)=-&$ { I(E_l’;:~~~~5.)1~,, } 

transforms T1* (~,k), T,* (E, k) in the variable k and arethekernels 
T, and T, whose action on the function c(E) is governed by the 

(T*~)(~)=~~TI(E,E')~(S')~F, i=1,2 (2.8) 

(2.4)-(2.7) can be represented in the form oftheproduct E(E)= sc(&), 

E < 1, U (5) = 0 (I), where a(&) is a function of the rod shape. 
Let us extract the principal terms of the expansion of the symbol K* (2.5) in a series 

in the small parameter a. Expanding the Bessel functions K,and K, in the mentioned series 
in (2.6) /4/, we will have 

K* (e, k) = A,, i- (E? In E) cc2 (g’) k2A, + 0 (3) 

A,, = (SpJ1 I2(2 - x0) P, - x,P, + 4P,1 

A, = (8p&’ [2(i - x,,) P, - x”P, + 2x, (P, + I’,) -+ 2(1x, - 

1) P, - 4P,l 

f2.9) 

We will note the properties of the tensor A, that are important for later. We introduce 
the orthogonal projectors 8 and lI (I is the unit quadrivalent tensor) 

8 = P, f 2P,, n = P,, 0 + II = I (2.10) 

0.8 = 0, n.n = II, o-n= II.B=O 

The linear space drawn by the tensors P!(m) is divided into two orthogonal subspaces 
(e and II) by using these projectors. It can be shown that the tensor A, belongs to the 
subspace 6) and has a non-degenerate inverse A,-' therein 

@.A, = A,.(_) := A,,, n.A, = A,.n = 0, A,.A,-’ E A,-‘.A, zz 0 (2.11) 
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3. A formal scheme for constructing the principal terms of the solution 
Of (1.3). We will examine a formal procedure for constructing the principal terms of the 
expansion of the solution of (1.3) in a series in 5 and 6. We will retain the first two 
components in the symbol $*(e, k) of the operator K in expansion (2.9). Then (1.3) takes 
the form (D = did%) 

c-‘.a (%) + A,.c,&.o (%) - 9 In eD2 Ia2 (5) u (%)I = c~-'.~~,(%) (3.1) 

We will seek the solution of this equation in the form 

u (%) = 0' (5) + .C In Ed (5) +. . . (3.2) 

We obtain the equation for the principal term of this expansion d(%) by substituting 
(3.2) into (3.1) and retaining terms of the highest order in E on the left-hand side. 

The following cases are possible depending on the relationship between the small par- 
ameters 8 and 6. 

lo. 6Vln e = 0 (1). In this case the equation for u"(E) take the form 

c-'.o" (&) + A,.c,.c-‘.o” (%) = cO-l.uO (%) 

Acting with the operators 8 and n on both sides of this equation and taking account 
of the properties (2.11) of the tensor A,,, we obtain two relationships 

A,.ue” (f) + (@ - A,c,).c-‘.o” (5) = Ox,,-‘.u, (f) (3.3) 

rI.c-LJO(%)=rI.c;'.u,(%); rJeO=@.a", CJ*"=n.lJ" (3.4) 

Since A, isa non-degenerate tensor in the subspace 8 with components of the order of 
unity, the estimates ae"(%)= O(l), u='(%)= O(fF) follow from (3.3) and (3.4). (It is 
assumed here that aa = O(1)). Hence, taking into account the equality u,~@ = umomamfl we 

obtain the following estimate for the tensor DO(%): 

UC""(%)= u,'(f) numb _t 0 (I), u,"(%)=O(6-1) (3.5) 

The expression for the axial component u,,,'(E) of the tensor u"(E) follows from (3.4) 
and (3.5) and has the form 

0," (%)=E&;'~G,,(%) - votraoe(%)l (3.6) 

where tr o,e = (o,e)a~' is the trace of the tensor u,e; E,, v0 are the Young's modulus and 
Poisson's ratio of the medium , and E, is Young’s modulus of the rod. 

2O. 6-l~~ In e = O(l)(c,.c-1 = O(e*ln E)). In this case the equation for a" (%) in (3.2) agrees 
with (3.1). Acting with the operators 8 and II on both sides of (3.11, exactly as in 
case lo, it can be shown that the tensor a“(%) satisfies the estimate (3.5) while the 
equation for the axial component a,"(%) of this tensor takes the form 

D21aB(%)~,0(%)~ - P*u~'(%)=$$ b,,(5) - v. tr~oe(%)l (3.7) 

The function u'(e) can be found from this differential equation apart from two arbitrary 
constants. To determine these constants, certain additional conditions (Sect.41 must be 
imposed on the function u,,,"(E). 

I.& us estimate the closeness of the formal expressions obtained for a"(%) to the sol- 
ution of the integral Eq.Cl.3). To do this we will investigate the residual from the right- 
hand s,iae of (1.31, that occurs on substituting the function u“(E) in its left-hand side. 
If on(%) satisfies the estimate (3.51, then the n-component of the residual turns out to 
be most essential. Substituting the function u" (5) into the left-hand side of (1.3) and 
acting with the operator II on the result, we will have 

GP~~(%) - (Turrt”J (f) = fo (5) + R (o;n”~ E) 

a,=1 + 
& 1 - Yg 

zq-l=g-- T=T,-&Tz 

f,(E)=% I%m (E) --vo trGF3(%)1 

.(X8) 

where R (urn’, 5) is the desired residual, and the operators T1, TZ are defined by the 

relationships (2.7) and (2.8). 
A component u,"(E) must be added to o,,,'(E) to compensate for the residual so that the 

function Urn (5) = orno (E) + Urn’ (E) would satisfy the equation 

amum - Turn= fo WY 
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If the component sml can be neglected as compared with CT,;, the function sn,'f~Pf~il' I.5 
the principal term of the expansion of the solution of (1.3) in a series in a and 6. Other- 
wise, the principal term of the expansion of uL,' in v and (r should be added to onao. We note 
that the @-component of the residual from the right-hand side of (1.3) is compensated by 
components of the order of unity that are small compared with the axial. component of the order 
of h-1 on substituting a function o0 (5) of the form (3.5) into the left-hand side Eq.Cl.3). 

We examine the form of the residual R in (3.8) for a rod with a different law ofvariation 
of the radius of the transverse section along the E axis. 

4. Cylindrical rod. For a cylindrical rod t':-- ail, a(t):- 1. We will estimate the 
result oftheaction of the operators 7', and T, in (2.8) on a smooth bounded function c (5) of 
the order of unity. We will represent (Tla)(E) in the form 

(T,c) (E) z rl"(5)c (5) 3 T,'(E) DO (8) i- -& T,‘(~;)D’o (E) -i- (4.1) 

where the kernel I', (E, E') has the form (2.7) for e (5) --= e. 
Evaluating the integrals (4.2) and substituting the result into (4.1)~ We ob&tin the 

estimate 

It is here taken into account that the integral component in (4.1) is of the order of 
P; Qto,@,,@, are functions of boundary-layer type localized in the neighbourhood of the rod 
ends E = i-1 

The estimate 

(4.5) 

can be obtained analogously. 
We will examine the case when 6-'e'ln e = o(1) and the function u0 (5) has the form (3.6). 

Substituting (3.6) into (3.8) end taking account of (4.3) and (4.5), for the residual R we 
obtain the expression 

(4.6) 

To compensate the principal term of the residual that is of the order of &no in the 
neighbourhood of the rod ends, components a,,,* and ET~II whichdependonthe"fast" variables 
T, = (l - 511s and z_ = (l + E)/E must be added to the function oc. Theequations for the func- 
tions CT& follow from (3.8) andhave the form 

a,o,,,~:(T*)-(TT(7,*)(Tf)=~'"(T*)~,,,r(rf-L 1) jill. ) 5 
m 

(T,o,)(r)= f T,(T-- ~')~~(~')~~‘ 
Ii 
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The numerical solution of the Wiener-Hopf equation analogous to (4.7) was considered in 

/l/. If 6-?a21n E = o (1) then the functions a,,,+ ((i - E)/E) and cm- ((1 + g)/e) , respectively 
are oftheorder ulna for f = 1 and f = -1 and are functions of boundary-layer type localized 
in the neighbourhood of the rod ends. The remaining part of the residual is compensated by 
components of the order of EUm' in the expression for urn, that can be neglected compared 
with the principal term cm0 (E) f cm+ ((1 - f)/~) + cm- ((1 + g)is). 

We will now examine the case when 6-1~~111 E = O(1). The function a"(E) here satisfies 
(3.7) (for a(E) = 1) and depends on two arbitrary constants. Onsubstituting the solution 
(3.7) into the left-hand side of (3.8) and taking account of (4.3) and (4.5) the residual R 
has the form (4.6) as before. The principal term of the residual is obviously a minimum if 
the function cm0 (5), as a solution of (3.7), also satisfies the conditions 

crtiP (-1) = u,,: (1) = 0 (4.8) 

These conditions enable the constants in the general solution of (3.7) to be determined. 

If %rl"(E) satisfies (3.7) and (4.81, then the expression for the residual R in (3.8) takes 
the form 

I:=E~Y(~)Do,C(-l)-Y(~)D~,,“(l)~+ (4.9) 

O(eQ IIlEUm") 

Y (t) = a$ (t) - *@I(“)’ @,(~)=1/2(v~‘+l--l~l) 

where Y((1 & E)ia) is a function of boundary-layer type. To compensate the principal term of 
the residual that is now of the order of EDu,,,' in the neighbourhood of the rod ends, the 
components sg-((1 + E)/E) and Ed ((1 - @/e) should now be added to c,"(E).The equation for the 
functions g- and gf have a form analogous to (4.7) with right-hand sides Y (r_)Du,,lo(-1) and 
-Y(T+)Du~’ (11, respectively. The components Eg- and ag' can be neglected everywhere as 
compared with u,,,O (5) with the exception of s-neighbourhoods of the rod ends since the func- 
tion u,"(E) tends to zero as f+-&l by virtue of (4.8). 

We note that for p > 1(S%*ln e = o (1)) the solution of (3.7) for u (E) = 1 with conditions 
(4.8) differs slightly from (3.6). Neighbourhoods of the rod ends that are domains of an 
exponential boundary layer are the exception. Therefore, to construct the slowly varying 
component of the principal term of the expansion of the function u(E) in e and 6 it is 
sufficient to examine the case 6-'s21n a = o(i). Other modifications of the relationships 
between E and 8 can also be investigated for this case by using appropriate passages to the 
limit in the expression ~'((5) . We note that functions of boundary-layer type that occur in 
the principal term of the asymptotic form of the solution for ~S-'a~ln E -0 (1) are not 
exponential but power-law (see (4.7)). Consequently, the function aa satisfying (3.7) 
and (4.8) in the case pB-1 describes the behaviour of the principal term of the solution 
(3.9) in the neighbourhood of the rod ends only qualitatively. 

The accuracy of the approximation of the solution of (3.9) by the functions IJo (5) 
satisfying (3.7) and (4.8) will be examined in the next example. We find the solution of a 
model equation analogous to (3.9) 

c&o - T,o = --'i&2 In E, a, = 1 - 'I&E? In e (4.10) 

where the operator T,is defined by the relationships (2.7) and (2.8) for E(E)= E. 
The procedure described for constructing the principal term of the expansion of the 

solution (4.10) in a series in E results in the differential equation D?o" _@ = __1 with 

homogeneous boundary conditions (4.8). We hence have the expression 

o" (&) = p-? (1 - ch pS/chp). (4Jl) 

We will compare the expression obtained for the principal term of the expansion of the 
solution (4.10) in a series in e with the results of a numerical solution of this equation 
as represented in Fig.1 (e=OA) and Fig.2 (E= 0.01) by continuous lines, and the function a"@ 
from (4.11) by dashed lines. Values of the parameter p=o. 4,1.2,2,10 correspond to curves 1-4. 
It is seen that the difference between o"(i) and o(E) is substantial only in the neighbour- 
hood of the rod ends. 

Remark. We examine the residual from the right side of the initial Eq.cl.1) on sub- 
stituting the function o"(E) satisfying (3.7) and (4.8) into its left-hand side. It can be 
shown that if o"(g) is the principal term of the solution of (1.3), then the residual 
mentioned is represented in the form R = Q(InlD)o'(&) where Q(t) is an analytic function 
whose expansion starts with terms linear in t /l/. The components compensating this part of 
the residual in the expression for o(z) are of the order of co"(E) everywhere with the excep- 
tion of the neighbourhood of therodends a power-law boundary layer domain. 

The function o"(5) satisfying (3.7) and (4.8) was compared with the exact solution of 
the problem on the tension of a medium with a stiff cylindrical rod in /5/. This solution 

was constructed by the finite-elements method. It turned out that the deviation of o'(5) from 
0 (2) was considerable only in the neighbourhood of the rod ends, which corresponds to the 
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estimates in this paper. 

Fig.1 Fig.2 

5. An ellipsoidal rod. In this case t: (Ef - E jfm, 
a smooth bounded function of order unity, then the estimate for 
can be obtainedinthe same way as (4.3) and (4.5) take the form 

cc (E) = 1’1 - p. If a(@ is 

(T,o) (E) and (T& (E) that 

(T,o)(~) = (5 (Q - 1/,~" In ED2 ((1 - 5') a (E)] -t 0 (8:) 

(Tzo)(Q = E? In FL) I(1 - 5') 0 (El] + 0 (+ 

Therefore, unlike the case of a cylindrical rod, the principal terms of the expansions 
of (T,o)(g) and (T,a) (E) in series in s a0 not contain functions of boundary-layer type. It 
hence follows that if the function a,,,"(%,) is bounded and satisfies Eq.(3.7) for a (E) = 
Ill--P 

Da I(1 - P) am0 @,)I - P”G” (5) = &$ fo (9 (5.1) 

then the residual R in (3.8) takes the form 

R = 0 (E%,,?) (5._') 

(1" ('s) and pp are defined in (3.7) and (3.8)). 
We note that each of the two linearly independent solutions of the homogeneous Eq.(5.1) 

has a singularity of the type (1 -ET' or (1 j-E)-' in the neighbourhood of the points 5 Z= d:l_ 
Consequently, the boundedness condition for a,"($) is sufficient to determine the constants 
in the general solution of (5.1). The components in the expression for a(%), that compensate 
the residual (5.2) in (3.8) , are of the order of (]n s)-r% for all tE\-f,I] and can be 
neglected compared with 0,". 

If f. is a constant function on I?, then the bounded solution of (5.1) has the form 

G," = (&Z In El-I (2 + p2)-1 (x0 - i) f. (5.3) 

and is also constant. We note that in the case of a constant external field, the initial 
Eq.(l.l) for an ellipsoidal domain V has a known exact solution /2/. It can be shown that 
the principal term of the asymptotic form of the exact solution as s--to has the form @P = 
u,,,%Pmfl where (5,' is given by relationship (5.3). 

6. A rod in the shape of a tapered spindle. in this case the function s (5) has 
the form F (t) = E (1 - I f I), a (E) =: 1 - (5 I. 

we again turn to estimates of the action oftheoperators T, and T, on a smooth bounded 
function o(E) of the order of unity. We start with the Operator T, whichwe representinthe 
form 

Tr = T,- + T,+ (6.Q 

(T,-o)(S)=ji T;&E')e(E')G, (T,‘~)(E)=~ Tl*(bE’)~(t’)4 
0 

IT,* (5.5’) =-L e=(lq5'p 
2 [(&-5')*+e?(I+5')L]"* 

Here H+(E) is the Heaviside function (H+(E)= 1, E>O; H+(:) = 0, E(O); H_(E) = H+(--S). 
Let u+(E) be a smooth function given on the positive half-axis %(R+) and defined on the 
negative half-axis R_ by using the analytic continuation procedure. We denote the analogous 
function given initially on R_ by a_(:~. 

Representing the function (T,*Q(E) in a form analogous to (4.1) and evaluating the 
integrals occurring there, we obtain 

(Tp) @)=a (E) - -&ca ln0 [(I - \E\)au (E)] 4 (6.2) 
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where the functions 

If c* (0) P 0, 
be discarded here. 

We now examine 
a series in 8 and 
the form 

% (%/E) (‘J-.(f) - U+ (5)) - Emi (E/E) b_(f) + 0, (5) + 

Do- (5) - Du+ (%)I - -& Ea In E@a (f3 8) Da [(I -I- %)‘U_ (5) + 

(1 - %)au++%)l - -+Ea b_(E) In(l + f) + u+(%)In(l - %)]+O(E') 

c (5) = 9 (E) D- (E) + c* (5) D, (E) 

@,,,cD,,@,, are defined by relationships (4.4). 
then the singular component that occurs on differentiating of IEI must 
With this stipulation it is possible to write 

U',c)(%) =ca In&Da r(l - lEl)2~~EH -6 
(6.3) 

~~~D'[(l-_I%l)2ln(l-_l%))o(%)]+ O(t.") 

(3.7) for the principal term of the expansion of the solution of (1.3) in 
6 (6-'.+ln F = 0 (1)) in the case of a spindle. We rewrite this equation in 

D*[(~-~%11)2~~nD(%)~-2~~,“(%)=~fo(%)~ Q=P’ (6.4) 

(the quantity p2 and the function f. are defined in (3.7) and (3.8)). Here, as in (6.2) and 
(6.3). the singular component that occurs in the differentiation of IE 1 should be discarded 
if u,= (0) # 0. - 

The general solution of (6.4) has the form 

cm0 (5) = Go (E) + c, (1 - / E I)r” + c_ (1 - 1% I)‘(- 
~ 

B* = - ('it) (3 F 1/l + 8q) 

(6.5) 

where Z,,,"(5) is 

(Q> 0). 

a bounded particular solution of (6.4), and C+, C_ are arbitrary constants 

Since the elastic field in the neighbourhood of a conical singularity on the boundary of 
a medium and inclusion should be square integrable /6/, the constant C, in (6.5) in front of 
the function (I - I % IF+ non-integrable in [-l,I), will be taken equal to zero. 

Substituting (6.5) for C, =O into the left-hand side of (3.8) and using the estimates 
(6.2) and (6.3), we obtain that the residual in the neighbourhood of the middle of the rod 
(% = 0) is estimated as follows 

R = 2s LQ (S/e) - (E/e) cbO (%ie)l Cg + 
2E@, (E/E) It!,” (0) + Cl + 0 (9 In eu,'), B = B_, c = C_ 

It is seen hence and from (4.4) that the principal term of the residual damps out with 
the asymptotic form jE/E 1-l with distance from the middle of the rod. If the constant C 
is selected from the condition that the coefficient for this asymptotic form equals zero, then 

c = -2 (2 + (3)-Q&" (0) 

The asymptotic form of the damping of the principal term of the residual 
mined by the function [E/E I-’ while the expression for (s,,,"(5) in (6.7) takes 

cf?lO(%)=GO(%) - 2 (2 I- B)-'~~:(o)( 1 - I E I)” 

In particular if f. in (6.4) is a constant then 

u,"(%)= (1TG) io --- 
2+1ne (t-q) c L&+l%lY] 1 P#f 

Gn” (%) = * foil-2111(1--)ij)], q=l; q=- t$$;r: 
m 

is here deter- 
the form 

(6.6) 

(6.7) 

It follows from (6.6), (6.2) and (6.31 that the residual R in (3.8) has a logarithmic 
singularity R -E*ln(l - 1% 1) O,O(%) as a minimum in the neighbourhood of the rod ends. To 
compensate this part of the residual, functions of boundary-layer type that define the 
principal term of the solution in the neighbourhood of the rod ends, should be added to a,'(&). 
The equation for these functions can be obtained in the same way as (4.7). 

Let us compare (6.6) with the numerical solution of the integral Eq.(3,9). We will make 
such a comparison using the example of a model equation analogous to (3.9) 

1 
a,o--lo=--~&*lne, am=l-g4E?1"e (6.8) 

where the operator T, is defined by the relationships (2.7) and (2.8) for e (E) = E (i - I E I). 
Applying the scheme elucidated above , we find that the expression for the principal term c"(6) 
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of the expansion of the equation in a series in E has the form of (6.7) for y0 (.X0 - I)_' r"ln e. 
The numerical solutions of (6.8) are represented in Fig.3 (e-0.1) and Fig.4 (e 7 0.01) 

by solid lines, and the function O"(5) of the form (6.7) by dashed lines. Values of the 
parameter 'I = 0.4, 1.2, 2,10 correspond to curves 1-4. The discrepancy between the solid and 
dashed curvescanbe reduced by adding functions of boundary-layer type localized in the 
neighbourhood of the middle of the rod and its ends to n"(E). 

7. The principal term of the external expansion of the field E(G). In con- 
clusion,wewrite down the principal term of the external expansion for the strain field ~(5) 
inamedium with a stiff rod. In the case of an isotropic medium, the kernel K(X) of the 
operator Kin (l.l), exactly like Green's function G(z) with which K (x) is connected by the 
relationships (1.2), can be written down explicitly. Since for rg v the function K(s - z') 
in (1.1) is smooth and bounded, the equality 

E(J)=~,(~)--K((r-~).a(z)d-+O(e,6) (7.1) 

C(z)= 1 a(y+ zmjdy. E(l.)=c;l.a(z), e, (s) = c;l ‘0” (I) 

follows from (1.1) at distances from the rod 
dimension. 

axis substantially exceeding its transverse 

0 

1 // 

2 

0.5 
/ & / J 

/ 

,I 

I I 7 

, 

” 0.5 s 1 
Fig.4 

It is taken into account here that cl.c -r = I + O(6), and the coordinates Yl, Yz, 2 are 
defined in Sect.2. 

Substitutingthe principal term co (z) of the expansion of the field o(z) within the rod 
in a series in s,6 here we will have 

*fi (2) = am0 (2) 5 (2) mamE + 0 ((oh’s), s (2) = nu2 (z) (7.2) 

We note that functions of boundary-layer type in the expression for u"(z) make a 
negligibly small contribution (as compared with the component u"(z) varying slowly along r) 
to the magnitude of the elastic stresses and strains far from the rod. To calculate these 
strains, relationships (7.1) and (7.2) can be used, where the function a$(~) is determined 
from (3.7) with the additional conditions dependent on the rod shape (Sects.4-6). 

1. 

2. 

3. 
4. 

5. 

6. 
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